The automotive industry constantly adapts with new methods of manufacturing as technology improves. Using this new technology requires the use of hazardous equipment, such as furnaces and welding robots, in order to successfully manufacture an automotive body frame. The intent is to drive cost down and automate all processes possible, but that isn’t always the easiest task. It requires the right kind of computer—an industrial computer—to automate a process while remaining sturdy enough to last a long time. Here are a few ways the industrial computer plays a role in how automotive factories have altered methods of construction for the better.

Heating Processes and their Affect on Military Grade Computers

One of the more common practices in automotive build is a process called “hot stamping.” It’s a technology developed in the 1970s requiring a shaft of steel to be heated at its austenitization (hardening) point. That temperature is generally around 900 degrees Celsius. No doubt the furnace that generates this heat is somehow insulated, but a temperature like that will undoubtedly affect all metals and tolerances in an automotive factory—including metals inside of a computer. The continual heating/cooling process over time can easily take a toll on any device (especially when it relates to an automotive setting), and so naturally you’ll want something resilient against temperature changes.

The best way to avoid this constant temperature warping is to trust in a military grade computer able to withstand temperature changes. Controlled furnaces are just one device able to affect the heat dispersion in an automotive warehouse, so a computer that can function around welding, heating metals, and extremely hot temperatures is ideal.

Automotive Industry Painting Procedures

Military grade computers aren’t just built to withstand high temperatures. Typical factories have time-intensive painting processes for an entire auto body that can easily take 14 hours to complete for a single body. The painting process runs through several sub-processes that wash, bake, sand, treat, clean, coat, dry, and wax the auto body. A computer with open air vents nearby wouldn’t last a week in any of those environments!

That’s why military grade computers are sealed and fanless. Ingress of any kind—whether dust, paint, soot, tiny metal shards, whatever the foreign item—can sentence the shelf-life of a computer to much shorter than it’s typical life expectancy. It’s important to get the proper computer with the proper enclosure to work around these environments, or else the automated assembly line won’t be automated until a new computer is in place.

Military Grade Computers and the Terminal Block Feature

Seeing how a car is made is the best way to learn how a car operates. Fortunately for us, a lot of dangerous processes and heat-intensive mechanics are behind glass walls where automated assembly is completed by robots. However, in order to control these metal behemoths a computer must be in close proximity—away from the people operating them. That’s why some of the industrial computer models feature terminal blocks for remote power and access. Standing behind a protective barrier, a factory worker could flip a switch and start up a military grade computer with the terminal block feature, engaging the automated assembly line without needing to risk life or limb around several robots.

DIN Mountable Computers

With the presence of potentially hundreds of electrical devices manipulating car parts, welding, spraying, cutting, heating metal, and maneuvering independently, electrical configuration must be incredibly complex. One loose ground can spell a power disaster, so it’s important all components—including the industrial computer—are grounded properly in addition to all electronic components running the factory. Installing an industrial computer on a DIN rail is a proper method to ensure the computer is grounded properly. It saves space too. A military grade computer isn’t designed to just sit on a shelf—ensure that it’s in the right place for safety and longevity.

 

Extreme heat resilience, enclosed environments, operation close to manufacturing, and proper electrical handling are important requirements for a military grade computer.  Choosing less expensive computers that can’t stand up to harsh environments like what you’d find in an automotive factory bring on hidden costs like repairs and replacement computers. Make sure your automated processes stay automated by selecting a military grade computer able to operate an automotive factory. Contact us for more information.