Tag Archives: industrial computer

Why Industrial Computers Are Perfect for Challenging Environments

Industrial computers are best equipped to work under the challenging working environments because they are built from the ground up to withstand the conditions that are not electronics-friendly. We can define such challenging working environments as anything that surpasses the norms of your typical controlled workspace such found in the office, school, library, retail store, or even hospital.

Temperature

The challenging working environments in the industrial sector vary greatly and can be characterized by higher or lower temperatures than that of an indoor installation. Notably, when we speak about temperatures and the ability of the industrial computers to withstand the higher and the lower temperature margins, we should also inquire into the possibility of the temperature fluctuations. For example, when your industrial computer or rugged tablet is exposed to colder temperatures outside in the field and significantly warmer temperatures in the engineer’s vehicle or tent. Assuming your technical workers carry a rugged tablet from the tent and into the cold, the temperature fluctuation is abrupt and causes condensation. How will your iPad or Android tablet behave if you subject it to such frequent temperature fluctuations? Rugged tablets are built with such temperature fluctuations in mind, so the condensation or cold/heat do not affect the internal electronics. Industrial computers, too, are enclosed in a rugged casing that withstands extreme temperatures and protects the discreet parts from their destructive effects.

Humidity

Temperature is not the only factor contributing to the ruggedness of the workspace. Humidity and exposure to liquid spills, splashes, liquid cleaning, or the need to function in the outdoor settings where it can rain is also a part of the normal operational needs in the industrial sector. The industrial computers, therefore, are liquid proof and have a sturdy casing that does not disintegrate if you clean it with a chemical solution.

Dust and Debris

On the contrary, if dust and other harmful particles find their way inside your computer, its lifespan shortens and its performance can be hindered. Industrial computers design takes into account the dusty, greasy and oily environments we can find in the food, beverage, restaurant industries, and other industrial settings, such as oil and gas. The fanless design and IP65 sealed, rugged casing keeps the dust, oil, grease and other harmful debris at bay.

Shock and Vibration

Vibration is, perhaps, one of the main characteristic features of the industrial workspace, be it on the construction site, on the manufacturing floor, or in the warehouse where the forklifts work. Needless to say, the off-the-shelf computers, when used in such environment, tend to fail significantly faster than if you use them in the office. The industrial computer, on the other hand, come with the solid state drive technology, and MIL-STD certified components and a rugged enclosure – all of which protect the electronics from the destructing effects of the excessive vibration and shock exposure.

Altitude, Solar Radiation

Solar radiation and altitude have a significant effect on the electronic products, and industrial computers use the different type of material and a design that stands up to a higher level of expectations than the consumer-grade computers. Unlike the MTBF of the discreet parts of the industrial computers, the MTBF of the discreet parts of the consumer PCS drops significantly when the PCs are exposed to high altitudes in the mountains, underground installations in the mining industry or excessive UV index, especially during the prolonged periods.

Location

For some reason, when most people think about rugged, industrial environments, they tend to focus on the temperature, humidity, and vibration, whereas the location or the distance from the headquarters also translates into a factor of the ruggedness. Be in underground, high in the mountain, far in the field, or out in the desert or the sea, your industrial computers need advanced connectivity and electrical and radiation safety to ensure a) your installations are connected and the data keeps syncing, b) the safety of your installations and workers, c) the safety and longevity of your industrial computer, if it is exposed to power outages and current fluctuations.

Therefore, the industrial computers possess the advanced connectivity options – wireless WAN and LAN capabilities, 3G, 4G, Bluetooth, and Wi-Fi. As long as the rugged tablets are concerned, they cannot be locked to a specific wireless carrier, and allow for GSM or CDMA connectivity without being dependent on a specific provider. The electrical and radiation safety is ensured with MIL-STD rated components and a variety of stringent certifications adopted internationally.

Space Constraints

Space constraints also create a challenge the industrial computers need to address. Organizations often need to mount computers in rather small areas with very limited air circulation that can cause the overheating of a regular computer. Industrial computers rely on the fanless design that uses the passive cooling system. This build has several benefits. First, there are less moving parts in the computer, so its lifespan increases. Second, no harmful particles or dust penetrate the enclosure. Third, this configuration consumes significantly less power to cool down and run. Therefore, industrial computers are also energy-efficient, saving companies significant amounts in power consumption.

More so, if you need a robust industrial computer that is smaller than your typical installations. So, industrial computers address the challenge of space constraints with a variety of sizes and customizable configurations. The latter address, aside from small form factor in mini rugged PCs, the compatibility challenges with legacy systems and interfaces.

Customization Is A Must

So, customization is another way industrial computers address the need to adapt to challenging working environments. Industrial computers come with VESA mount options, legacy ports, dual hard drive support, Windows/Linux support, and a wealth of customizable parameters from hard drive to RAM and video card, or storage capacity. The ability of rugged computers and tablets to interface with a growing variety of complex networks of software and equipment is one of their decisive advantages achieved through customization.

Worker Safety

There is more to the industrial environment than the physical parameters. Namely, the worker safety, data integrity, security, and the sustainability. The worker safety is ensured with stringent tests and certifications, such as MIL-STD rated discreet components, IP65 rating, waterproof bezels, 60601-1 electrical and radiation safety, IEEE, or EN 50155 vibration protection, and many other certifications. If a device is not built with these intrinsic safety features from the ground up, it is not apt for use in the challenging working environments.

Data Integrity and Safety

Data integrity is ensured with the protection against current fluctuations, backup batteries and dual hard drive (SSD) technology and advanced connectivity for timely sync. On the other hand, data security features of industrial computers ensure the data is accessible only to authorized personnel and applications. With industrial espionage and ransomware rates increasing in all industries, cyber security issues cannot be ignored. Therefore, advanced authentication options, such as CAC/ Smart Card reader, biometric authentication with a fingerprint scanner, RFID Imprivata SSO coupled with Windows Professional user authentication features, sandboxing, encryption and remote administration offer the high level of security for your corporate data.

Sustainability

Future-proof sustainability is another crucial advantage of robust industrial computers and rugged tablets. As your workflow evolves and you add more devices and interfaces to the system, your industrial computers need to be able to accommodate your growing needs in capacity, performance, and compatibility. The trend toward the implementation of Big Data, IoT, predictive analytics and everything AI means your industrial computers will need more processing power sometime during their realistic, expected life cycle. Will you be able to upgrade them? Will the manufacturer offer spare parts, extra ports or other upgrade options if the need should arise?

To ensure your industrial computers and tablets are capable of sustaining peak performance under the increasingly resource-hungry – or mobile – use, make sure the manufacturer offers ample flexibility for the initial customization and the subsequent upgrades.

At Cybernet, we believe each client is unique, and ensure our industrial computers address the highest bar of our clients’ expectations. Contact us today to get a quote for your customized build.

How Industrial Computers Are Changing Industrial Automation

The accelerating pace of manufacturing competition pushes the adoption of advanced automation system globally. Used widely in detection, optimization, control, management, scheduling, analyzing and decision-making in various production processes, industrial automation improves product quality and the quantity output, increases the safety of labor and lowers the production costs.

Industrial Computers At The Heart of Industrial Automation

Industrial automation roughly consists of three key components – hardware, software, and system. Needless to say, the industrial computer is the cornerstone of industrial automation, the core of automation equipment and the base of information infrastructure. The industrial computer is now the driving force of industrial automation and the innovation that pushes the boundaries of automation the way we know it.

The current challenge for the enterprises now is to monitor the growing market of industrial automation solutions and technologies. Keeping up with the trend allows the companies to select and apply the automation solutions that will keep them ahead of the global competition. This means the decision makers need to not only understand the currently available technologies but to continue an ongoing self-education to be able to see the perspective in the innovative solutions.

Robotics

The industrial automation is the present and the future, and robotics is gaining momentum. Collaborative robots dramatically broaden industrial automation possibilities. The flexibility of robotic automation solutions allows the companies with modest budgets to implement them widely. The worldwide competition has been shaped by now, with USA, Germany, China, South Korea, and Japan accounting for three-quarters of robot sales globally. China aims to become the leader of the world’s most automated nations, with 150 robotic units per 10,000 employees by 2020, according to the International Federation of Robotics.

The industrial computers drive the robotics industry, allowing for the industrial automation and digital information from sensors, cameras, the numerous IoT and industrial software to meet in a robust and easy-to-use interface of an industrial computer that can operate in rugged environments, is portable, has a significantly longer lifespan than the consumer PCs, and effectively a lower TCO.

Big Data

The consumer industry has influenced the changes in the industrial PCs evolution. The push for smaller, mobile and ever more robust and powerful devices has urged the industrial computers to keep up with the general trend. The past decade saw such advancements in the industry that allowed the industrial PCs to become smaller but handle the big data and analytics that require huge computing power. The capability of industrial PCs to handle big data increase the productivity and manufacturing performance. At the same time, the availability of multiple builds and solutions has made industrial PCs affordable for manufacturers of all sizes.

Powered by industrial PCs, industrial automation systems capture, process and analyze a wide range of data, the Big Data. That analyzed data is then effectively used to:

  • Improve productivity and performance
  • Make predictive maintenance possible, which helps manufacturers avoid production interruptions due to machine failures
  • Improve equipment utilization and overall equipment effectiveness
  • Run the equipment at optimized energy output, minimizing the production costs even further
  • Remotely access control systems with industrial mobile devices
  • Manage and control cybersecurity of the complex ecosystem

 

By capturing and analyzing data at every stage of production (through specially designed software, sensors and the industrial computer as the processing power of that data), manufacturers can review and create new manufacturing designs or optimize the existing ones. Big data allows the enterprises to connect, compare, assess different parts of the production cycle and use that information to make the production smarter, more cost-effective, and make predictive decisions.

The Fourth Industrial Revolution

The growth of industrial automation by now has shaped a new vision  – Industry 4.0, which is a holistic approach that calls for omnidirectional modernization through the application of technology. The industrial automation adoption rates grow partly due to the fact that manufacturers now realize low labor rate is no longer a winning strategy. Industrial automation is.

This does not mean, however, that the machines are replacing humans – it means the humans need different skills. According to DMDII, The Digital Manufacturing and Design Innovation Institute, there are 600,000 unfilled positions in manufacturing around the country due to the technological skills gap, with Baby Boomers retiring and companies struggling to find skilled workers to replace them.

Industry 4.0, or the fourth industrial revolution, calls for the efficient implementation of the Internet of Things and communications technology in conjunction with the production. What else if not the industrial computer lets the multitude of machines communicate and offer a control and analysis interface to humans?

Industry 4.0 vision is grand and exciting. It envisions the achievement of the higher efficiency, productivity and self-managing processes, with industrial equipment, machines, logistics systems, IoT, communication systems, Big Data, analytics and humans communicating and cooperating directly. And the industrial computer is at the center of the intertwined web of these interactions. Namely, the mass production, affordability, and availability of industrial PCs.

The Industry 4.0 envisions the production of highly customizable produce in large quantities through industrial automation. In an environment, where production and logistics intelligently and effectively communicate creating a flexible manufacturing ecosystem, industrial computers play the key role.

A recently published Price Waterhouse Coopers report Industry 4.0: Building The Digital Enterprise says 72% of manufacturing enterprises expect their data analytics to improve their customer relations, while 35% of companies that already adopted Industry 4.0 expect their revenue to grow by 20% during the next 5 years.

New Opportunities

Finally, the growing role of industrial automation, robotics, IoT and Big Data is projected to give life to new business models that will offer new opportunities for manufacturers big and small.

Just as mobile technologies have revolutionized the communications and entertainment sectors, the increasingly powerful industrial computers let the industrial automation revolutionize the manufacturing processes and even create new business models. The enterprises that will harness the benefits of the digital technologies will be ahead of the competition in the upcoming decade.

Smart Factories and Their Use of Industrial Computers

Smart factories are rapidly replacing their traditional counterparts. By cutting costs, reducing labor requirements, and shrinking the space needed for operation, smart factories are able to increase production, raise profits, and improve customer satisfaction.

What Is a “Smart” Factory?

Smart factories are operated from an industrial computer, which controls the smart camera that allows the system to operate. Smart factories differ from traditional systems in a variety of ways. The predominant difference is the elimination of the errors that can result from human manual operations. Automatic inspection by machines means consistent output along every step of the factory process, providing consistent quality.

But smart factories have other benefits as well. They can help to lower production costs, as they eliminate much of the human labor that must be paid in a traditional factory. They also have increased productivity, because the entire system is automated and runs smoothly, with less risk of error. The consistency of production also means better customer satisfaction with the finished product.

Why Are Industrial Computers Essential for Smart Factories?

An industrial computer must be used because the system has to be rugged. Factories produce a variety of products, many of which can cause wet or humid conditions, spread dust, or produce a lot of vibrations. Industrial computers can hold up to whatever rugged elements a factory throws their way, while also providing the processing power needed to run the smart system. The computer also must be small, as smart factories being created in traditional factories often lack the space necessary for large, bulky technologies.

When it comes to operating smart factories, the vision system dictates the work that can be done, the quality of the work, and more. Smart cameras utilize multiple different technologies, including image sensors, storage space, and processing capabilities. While a more powerful smart camera may be able to execute more complicated tasks at a faster speed, they also take up more space and require more power for operation.

A larger camera may also require a fan if there isn’t space to regulate heat, but in a factory space, moving parts like a fan represent the threat of failure, which can shut down the entire system. Rugged industrial computer systems, such as Cybernet’s Fanless Rugged Mini PCs, help to eliminate the need for a cooling system, as they are better able to withstand temperature changes than lighter systems.

What Add-Ons Are Available for Industrial Computers that Are Specific to Smart Factories?

Smart factories utilize other technologies alongside their industrial computers as well. Many smart cameras can now be connected with HMI or a screen at the production line, rather than communicating only with a control room. The ability to have a screen on the production line means that problems can be caught far earlier in the production process. This presents the need for an industrial panel PC, such as Cybernet’s iOne N19, which can allow an operator to monitor and control any step of the process with ease. If an error occurs, production can be stopped or adjusted almost instantly. The industrial panel PC, like the computer itself, is rugged, and can withstand the elements within any factory space.

Another option available alongside industrial computers are industrial tablets. These make working on the factory floor or quickly and easily shifting operations a breeze. Cybernet’s Rugged X10 10.1” Industrial Tablet, with its waterproof and shockproof build, weighs just 2.2 pounds, but is powered by Intel i5/i7 CPU with vPro. Their rugged build makes them perfect for use anywhere and in any factory, while their processing power make them great for working on the go when a traditional computer is not available. Many industrial tablets, including the Rugged X10, also have cellular capabilities, which can allow operators to work from anywhere, which can help to speed up production and increase profits.

The Critical Reasons Why 3G/4G Wireless Functionality Is Important for Industrial Computers

As industrial computers get more and more sophisticated in their designs and capabilities, the focus has shifted to making them more versatile and efficient. An industrial PC today, in any of its forms – fanless, panel, etc – is built to be able to cater to the requirements of any industry, medical, engineering, aviation, retail, and so on. In order to be successful in doing so, an industrial PC must fulfil certain common criteria. Chief among these are durability, heat and water resistance, shock and vibration resistance, and wireless connectivity.

3G/4G wireless functionality has had a lot to do with the popularity that industrial PCs currently enjoy. By eliminating the need to hardwire each and every computer in an industrial setup, 3G/4G has set the stage for a much more evolved approach to industrial computing, and here’s how:

Widening the Field

Industrial establishments are often set up in remote locations, where hard wired connections are difficult to implement. These environments include manufacturing plants such as in the automobile industry, where intelligent connectivity protocols are just as important as the physical toughness and internal configuration of each individual machine. When on the field, a high-speed wireless functionality goes a long way in removing the hassle of cables, tethering and bulky control units from the equation, relying instead on the existing cellular service in the concerned location.

M2M Communication and Automation

The high data transfer speeds offered by 3G/4G wireless technology facilitate machine to machine communications and data sharing between multiple nodes of an industrial setup. It enables live video streaming and real time monitoring, thus keeping the field units of an industrial establishment up to speed with control centers spread across multiple locations. With individual machines efficiently participating in a shared process remotely, without the need for human supervision, the groundwork for smart industrial automation is laid.

Embedded Computing Applications

3G/4G wireless capabilities allow industrial mini PCs to be used as embedded computers. These compact fanless computers, when reinforced with wireless connectivity, can cater to dedicated tasks within a large or complex mechanical or electrical system. Such embedded systems have numerous applications today; vital stats monitoring equipment and medical imaging systems (PET, CT, MRI, etc.) in the medical industry are good illustrations.

Staying up to Speed

3G/4G wireless functionality also enables industrial computers to be upgraded remotely, whether in terms of improvements to their software capabilities, or in terms of streamlining or expanding them with newly developed functions significant to the particular industry they belong to. The upgrading process becomes much simpler and more convenient thanks to a high speed wireless connection.

3G/4G wireless functionality has affected a sea of change in how industries function, and will no doubt pave the way for a future with many more possibilities. This technology has, in a sense, completed the definition of the modern industrial computer, by adding to it the capability to do its job from anywhere and everywhere, regardless of physical and/or connectivity constraints.

Mobile Medical Applications of the Industrial Computer: The Case of the Medical Emergency Vehicle

The demands of modern mobile healthcare are much more challenging than those of most other industries. This is where lives are at stake, and emergency situations arise at little to no notice. In recent years, sophisticated computing has worked hand-in-hand with infrastructural advancements to increase the capabilities of mobile healthcare. Medical grade computers and tablets are now completely geared towards facilitating the provision of state-of-the-art medical care in mobile or makeshift situations.

Mobile Medical Care

Mobile medical care encompasses a host of concepts ranging from virtual mobility – such as patient data sharing – to actual physical portability of medical equipment and processes. The most tangible illustration of the latter can be seen in modern medical emergency vehicles. This includes ambulances that are used to transport patients from one station to another, as well as non-transporting EMS vehicles that are dedicated to moving medical equipment and supplies, and in some cases paramedics, to a site of emergency.

Up until a decade ago, medical vehicles were hardly equipped to adequately cater to emergencies. Today, industrial computers play a critical role in patient care during medical emergencies. Sturdy, shock proof and highly sophisticated, these rugged computers and tablets are designed to withstand demanding situations, and deliver results that ordinary computers could not have.

Fanless Rugged Mini PCs in Mobile Medical Care

The most commonly used medical tablets are the fanless rugged mini PCs. These industrial computers package superior performance in a casing that is resistant to heat, water damage, dust, microbes, shocks and vibrations. Their fanless cooling systems further add to their toughness and give them small footprints that can be docked into any setup – in this case a medical emergency vehicle. Modern industrial mini PCs are also equipped with wireless functionality, again adding to the convenience with which they can enable paramedics to stay connected with hospitals and medical centers.

RFID Scanners

Industrial computers also boast of some highly developed features that give them an edge over even the most top-notch regular PCs. Medical care providers can use the built in RFID scanners in these systems to bring themselves up to speed with a patient’s medical records and test results and update this information with details of any drugs administered or procedures performed during transit to a medical facility.

Industrial Computers in the Mobile Medical Industry

The rapid increase in the number of industrial computers used in the mobile medical industry is increasing with time. Thanks to these devices, medical emergency vehicles are now able to provide advanced life support to patients in critical conditions. They also allow basic tests and prepping procedures to be conducted in transit, and relay this information in real time to the hospitals the concerned vehicles are affiliated to. Even blood banks have adopted industrial tablets as the control devices in their mobile donation centers, using built-in barcode scanners to acquire donor data, thus saving precious time and effort.

Mobile medical care has broken new ground worldwide, and the bulk of the credit goes to industrial computers. Visualizing a future where a standalone vehicle can provide advanced medical care to a remote location without immediate hospital access is no longer all that difficult.

The Role of Industrial Computers in Industrial Automation

Industrial automation, as the name suggests, refers to the automation of industrial processes. It may be understood as an umbrella term for automation of design, manufacturing and monitoring processes and techniques, across the industrial spectrum, be it engineering, civic, defense, medical, retail or home automation, to name just a few. Automation has shaped our perception of these industries, and as such defined our relationship with them.

Computers and industrial automation cannot be understood in isolation. Not only have computers directed the trajectory of industrial automation, developments in the latter have in turn influenced advancements and improvements in computing processes. This symbiosis is so deeply inset in the modern world, that no longer are questions about the significance of computers in the industry relevant; this significance is a given. There is however, one development in the field of computing that deserves mention on account of its highly sophisticated synchronization with the requirements of industrial automation. This development is the arrival of the industrial computer.
Industrial computers come in various shapes, sizes, configurations and capacities, depending upon the aspect of industrial processes they are meant to handle. Between compact fanless rugged PCs, panel PCs, and highly scalable models, industrial computers can safely handle automated manufacturing, assembly, monitoring and remote access for any industry.

Manufacturing

Industrial computers are ideal for high volume manufacturing that transcends the limits of human labor. Industrial PCs with state-of-the-art configurations and highly robust physical forms are used in factories to create and assemble the components of complex equipment with perfect precision, and also run automated quality checks at very high speeds. Automobile and equipment manufacturing industries have greatly benefitted from the development of rugged and powerful industrial computers.

Asset Tracking

One of the primary benefits that industrial computers bring into the equation, is their ability to monitor any given processes or components for possible discrepancies. This is not limited to quality control; in fact, industrial computers are immensely popular in the day-to-day functioning of industries such as retail and healthcare. This is because they facilitate the tracking of assets, both on site and remotely, and the efficiency and accuracy with which they do so makes them irreplaceable. Compact panel PCs can easily be integrated into a teller’s counter, or scaled up to make the most of a monitoring center, giving any industry immense flexibility to design their asset tracking processes as per the environment within which they function.

Simulation and Visualization

Scientific advancements today owe a major component of their success to industrial computers. These powerful systems emulate real world situations, making it possible to analyze risks, extrapolate possibilities and test any system within any framework, at little to no risk of adverse impacts. The capability of an industrial computer to simulate and generate realistic visualizations of possible outcomes finds application in a wide range of industries, ranging from geology and mining, to mechanics and engineering design, right up to surgical simulations and real time medical imagery.

Industrial computers came into existence as a response to the growing need for evolved and sophisticated automation, experienced by every industry with a global consumer base. They are, therefore, inseparable both from the modern definitions of these industries, and the future that awaits them.

The Ultimate Buyer’s Guide for Rugged, Industrial Computers

At the core of present-day production facilities are industrial computers. Aimed largely at streamlining data acquisition and process regulation in shop-floor settings, industrial computers continue to function both as a primary processing resource, as well as a secondary light-weight computing front-end. Nothing serves a highly distributed, process control environment better than an industrial computer.

Industrial computers exhibit certain differentiating characteristics that mark them distinct. Simply put, these peculiar characteristics are the very considerations that decision-makers must take into account when purchasing industrial computers for manufacturing facilities, mechanical laboratories, and other unforgiving operational environments.

In addition to sheer computing prowess, here’s a checklist of important features set to assist you in making the all-important industrial computer purchase decision:

Shock and Vibration Resistance:
shockvibProlonged exposure to high levels of shock and vibration is perfectly normal for industrial computers, particularly for the ones deployed in production plants and machine floors. The rugged computers are expected to tolerate such demanding operational conditions during their entire lifetime. It is important that the industrial computers you buy be shock and vibration tolerant.

This is achieved by incorporating a metal spring in the industrial computer chassis. The design intervention protects the internal modules from undergoing otherwise unavoidable damage when rigorously shaken, hit accidentally by moving parts, or dropped. Make sure your potential purchase is equipped with this feature.

Military Grade Electronics:
chip1To ensure fortification down to the component level, a handful of manufacturers go the extra mile and integrate military-grade electronics into their industrial computers. The move improves product reliability significantly. Aluminum electrolytic capacitors coupled with the latest in high-performance charge accumulation technology adds an extra level of protection – making it a must-have feature for computers to be installed in modern-day industrial settings.

Ingress Protection Marking:
IP65-TESTED-LOGOThe durability and longevity of electronic devices are ascertained by the International Protection marking standard they conform to. The IP certification indicates an ample degree of defense against dust, dirt accidental contact with water and liquid spills.

The IP65 certification signifies protection from the minutest solid-particles to such an extent that no ingress of dust takes place. The certification also means that the product’s enclosure provides a certain level of protection against harmful contact with water or similar liquids. IP marking is, for this reason, an immensely desirable feature in industrial computer systems. Double check that your future purchase conforms to standard IP protection marking.

Fanless Construction:
Why_FanlessConventional fan-based cooling systems in traditional medical computers are prone to mechanical failures. Instead, having a fanless, passive cooling system on-board the industrial computer ensures that debris such as dust, dirt, and chemicals are not spread at the workplace. This is particularly important for clean-room and high-precision manufacturing settings. A passive cooling system also ensures lowered levels of electrical and auditory noise, making the fanless design worth every penny.

Operational Temperature Range:
hot-thermometer-clip-art-dcrexypMiFrom ultra-low temperature around storage units for chemicals and food items to blazingly high temperature in the vicinity of heavy machinery manufacturing units, industrial computers are subjected to extremities in temperatures every single day of their operation. The dynamic range of temperature over which an industrial computer operates is perhaps the most important design consideration while making a purchase decision. A higher dynamic range is most often desirable and should be warranted.

Industrial computers built by Cybernet pack all of the amazing features mentioned above. Cybernet’s industrial computer systems are built upon a unique design philosophy that emphasizes a meticulous interplay of ergonomics and reliability, delivering the very best in next-generation, rugged industrial computing. Simplify your industrial computer buying decision by learning more about Cybernet’s rugged computer product line at www.cybernet.us.