Tag Archives: medical grade computers

4 Ways Workstations on Wheels Improve Hospital Care

They’re called workstations on wheels, or WOWs: mobile medical carts, either powered or non-powered, that allow nurses and other personnel to move from bedside to bedside with medical computer systems in tow. They’re rapidly becoming a staple in healthcare operations of all varieties, part of a larger wave of technological innovation that is revolutionizing the way we treat the sick and injured.

WoWs are designed not only to enhance the efficiency of hospital staff, but to provide better care for patients and improve the overall treatment experience. They come with a variety of designs and features, but all of them should have the same basic goals in mind: saving your staff time and energy, and letting them focus on patient care. Here’s a quick list of 4 ways a good medical equipment cart can do that.

Patient Charting with a Computer on Wheels

Paperwork is the bane of most hospital staff members and patient charting can be an extremely time-consuming process. A recent study by the National Institute of Health maintained that nurses spend an average of two hours a day on charting and similar record-keeping duties. Paper charts need to organize and unify a great deal of information, which makes them extremely vulnerable to human error. Ideally, charting should take place very quickly after visiting the patient: within an hour or so. The more time that goes by, the easier it is to make mistakes and the more likely those mistakes will have an impact on other aspects of your operation.

Electronic medical records (EMR) provide a theoretical solution to the problem, but they need to be accessed by a computer station, which isn’t always possible when making the rounds. It’s not uncommon for a nurse to do her rounds and then chart everything into the EMR at the nurses station, which is inefficient and takes time away from patient care. A medical cart computer solves that issue by allowing healthcare provider to simply bring the computer with them. It also permits the staff to use barcode scanners on patient wristbands and similar forms of ID. That, in turn, provides swift and accurate information while allowing your staff to do patient charting as they go instead of having to wait for long periods of time before documenting the information properly.

Making Medical Devices Mobile

There are often times when a patient is too sick to comfortably move to other departments of the hospital, or a doctor might order heart or respiratory monitoring tests that can easily be performed bedside. It is important that the medical devices entrusted to perform these tests can be brought into the patient room without the need to plug things in, connect to monitors or clutter what is typically an already small space. 

Medical carts are often used in conjunction with medical devices for exactly this reason. A lightweight powered cart will often be used to power a medical device like an ultrasound machine or respiratory monitor, plus the medical computer that runs the device. The maneuverability of these carts make it easy for a technician to take the device to the patient, rather than the other way around, which can drastically improve patient care and get tests run faster and more efficiently. 

 

Secure, Accurate Medication Dispensing

Proper handling and dispensation of medication is one of the most important parts of hospital care: ensuring that each patient gets the medicine they need in the required dose at the right time. That relies on the hospital staff keeping accurate track of all the medication through the entire process, including recording the dosage in the patient’s chart once it’s taken.

A medication dispensing cart with locking drawers can help improve this process, while ensuring accuracy and security. Each patient is assigned a drawer with the precise medication needs. The drawers are locked and coded to the patient’s ID badge or wristband. A bar code scanner or similar device can be used to scan the patient’s ID when the caregiver arrives at their bedside, and unlock the pertinent drawer containing the meds. That ensures that there are no mistakes in this all-important aspect of patient care, and that the dosage and time of dosing can be quickly entered into the patient’s records with the cart’s computer.

Medical Carts can Improve the Patient Experience

Anyone who has spent any time in the hospital knows that the cafeteria food won’t win any culinary awards. But what is worse than the food is getting the wrong order or a tray of food you can’t eat, leading to having to wait even longer for a meal. Though less dire than dispensing the wrong medication, a patients dietary needs pose their own health challenges. Some patients have dietary restrictions based on their treatment; others may have previously existing conditions such as a dairy allergy, or require a kosher meal because of their religion. A lot of hospitals still use paper menus that the patient fills out, and are then collected. This poses a number of problems. The wrong menu might get distributed to a patient, or the patient selects an item that they can’t eat due to doctor orders or allergies. An order could get lost or misplaced, leading to a patient not getting fed, or having to wait for the error to be discovered and corrected. 

WoWs can address that the same way they address medication. A barcode scanner connected to the medical computer can scan the patient’s ID to check for specialty diets or anything that might present a problem, ensuring that there are no mistakes. Staff members can select the food the patient wants from the available options, skipping the need for hand-written orders and streamlining the entire process as a result.

Cybernet Manufacturing offers a wide variety of turnkey medical cart solutions that can be paired with any of our medical grade computers. To find a solution that meets your needs and your budget, contact our team today!

surgical monitors and medical computer system

Understanding How Medical Computers Enhance EMR Capability

Technology in hospitals has advanced greatly towards automation and electronic document storage to improve the lives of patients and facilitate the jobs of medical professionals. As of 2015 96% of all non-federal acute care hospitals had adopted basic EMR software. Even in rural areas adoption was at 80% – up from just 53% as recently as 2013. As with all tools, however, adoption isn’t enough. How you use a tool determines if you are maximizing its effectiveness and your ROI. Since the introduction of EMR systems, medical computers have presented new methods of accessing healthcare information and services. Here’s a brief look at how these systems are changing healthcare information roles.

Making Charting Less of a Time Drain

Probably the most dramatic shift since the widespread adoption of EMR software has been in how patient charting is done. In the past, charting was a paper process that took up hours of a nurse’s time each shift, taking away from actual time spent on patient care. Even today however, some hospitals and facilities still require nurses to do their charting at the nurses station, which means that time is still wasted transcribing data into the EMR software. Time that could be spend tending to patients.

Medical cart computers that are certified to run EMR software can help alleviate tedious processes like this. Instead of charting at a central location, nurses can go room to room, administering to their patient’s needs, and chart in “real-time”. What sets these computers apart from regular commercial grade computers is two-fold. First and foremost, they are medically certified devices that have been cleared for near patient use. Second, they use integrated RFID, fingerprint and smart card readers to ensure secure log-in, keeping patient data safe and secure as mandated by HIPAA.

Making Anesthesiology Safer

There is no time when a patient is more vulnerable or when a hospital’s risk and liability are greater than when surgery is being performed. The role that anesthesiologists play in mitigating both risks can’t be understated. Unfortunately, a lot of facilities still use antiquated processes when it comes to anesthesiology. There are certain realities that must be adhered to in an operating room. The sterile nature of the rooms and regulations regarding electrical medical equipment often times leads to anesthesiologists being forced to monitor patients and record vital information on paper. We’ve even heard of one example where the anesthesiologists were monitoring the patient from outside of the operating room because their equipment was deemed safe for near patient use. This is a massive liability that is easy to fix.

Medical computers are built and designed for these applications. Fanless medical computers are safe for sterile environments. A true medical computer will also be UL60601-1 certified for near patient use and IP65 rated for cleaning and disinfection. Large displays with touchscreens also make it easier for the anesthesiologist to enter patient vitals, meaning there is less time doing data entry and more time administering to the patient. Here’s one example of one of the advanced surgical centers in the country made the switch to fanless medical computers in their operating rooms to enhance their patient care.

 

 

Remote Patient Care

It’s not always the case that patients are able enough to travel to a doctor’s office. Disabled individuals and shut-ins will need in-home care. Mobile health clinics might be necessary in rural areas. Mobile clinics are also an important pieces of the healthcare puzzle in underserved areas. There are several reasons why an individual might not be able to gain reliable access to healthcare on their own. But mobile technology now allows healthcare to come to them, if not in their homes, at least in a more convenient location to them.

Medical grade tablets have completely changed healthcare. In-home nurses can bring these devices with them and record patient information directly into an EHR system. The same can be said of mobile health clinics. Patients can use a table to enter medical histories or sign up for patient portals so they can access their records from home. Practitioners can even engage in telehealth consultations to share test results or help diagnose ailments. And all data is immediately recorded in an EMR solution every step of the way.

Preventative Medical Care – The Future of EMR

As before, healthcare has “developed legs” and evolved to become so comprehensive that healthcare tracking is something that can remain with patients. Since the rise of the Internet of Things and wearable devices that track our health, patients are taking better preventative steps for healthcare. Instead of periodical healthcare snapshots, physicians can look at a profile of patients with ongoing health metrics and identify conditions that can lead to more serious health complications years down the road. This allows for a further understanding of illness which can push the boundary of medical education and progress. Many experts believe that blockchain technology will allow healthcare networks to aggregate hundreds of thousands of anonymous data points to identify risk factors and health trends, ultimately leading to early diagnosis and preventative health plans. And of course, medical computers will be at the forefront of connecting the dots.

These are just a handful of the ways that medical computers are maximizing the way hospitals and other facilities are using their EMR software. EMR software, like all technology, will continue to evolve and grow and the way that it is used on a day to day basis will improve the outcome of patients everywhere. For more information on how to improve your EMR investment you can contact us here.

 

fanless medical computer and medical grade all in one computer

3 Ways to Automate Tedious Paper Processes in Hospitals

Nurses and doctors often voice the desire to go paperless. A recent report from International Data Corporation shows that about 40 percent of healthcare institutions have implemented paper reduction processes to operate a little greener. Although these efforts have improved a hospital’s environmental footprint, the costs of paper, ink, and daily printing are still skyrocketing. Who would have thought behind all the sophisticated medical procedures that paper processes are still expensive? Well, we’re here to provide some methods of solving perpetual paper problems that hospitals face consistently. The answers lie in technology.

Anesthesiology Enhanced with a Fanless Medical Computer

An anesthesia record is simply an account of drugs administered, procedures followed, and patient responses. Documenting it requires frequent sampling of data to ensure the patient is subdued during surgery. We’re sure millions of anesthesia administrations happen annually—one anesthesia paper record for every administration can add up over time. Plus, If you’ve ever seen an anesthesiology record for a patient, it’s almost like reading a difficult foreign language backwards. We trust in an anesthesiologist to read their own handwriting—as the rest of us may not be able to—but when transcribing it from the page to the screen as the common practice is today, that’s never a perfect two-step process. It’s basically doing double work, recording the results on paper and then entering that into the computer. Not only that, but the monitoring process is time-intensive and takes too much attention away from the patient. Wouldn’t it be nice to just track anesthesia with a computer directly? Ah, but there’s one problem. Regular computers aren’t allowed in an operating room during anesthesiology administration for surgery. That requires a dust-free environment to protect the patient, so an EMR system with fans wouldn’t do—unless you’re using a fanless medical computer.

The dual advantage of these computers is they protect the patient and they also streamline data sampling during anesthesiology administration, removing the paper process altogether. We’ve heard of use cases how some anesthesiologists were highly relieved that the process for data sampling was instant and didn’t need transcription—their computer did all the work and it saved them time. Not only does this save time, but it also allows the anesthesiologist to focus more on the patient, rather than on data entry. Suddenly, the tedious and error-prone process of paper data sampling turns into a process handled solely by the anesthesiology application. Imagine a stack of paper one million sheets high, one for every anesthesia operation done annually in a hospital and suddenly the savings are clear. 

Interoperability Still a Concern

Three surveys released in 2015 performed by researchers from the Office of the National Coordinator point to improved interoperability among hospital data systems. However, transmitting records from one EHR system to another was the least “improved-upon” function—clearly, efforts in improving interoperability have been made, but there’s still room to grow. So naturally, nurses and physicians resort to printing out records. Consider that printing out records consistently could lead to a drain on time and money—we shudder at how much ink still costs today. But the fact remains that there are still paper-heavy processes because of systems that don’t play nice with each other.

Large EMR systems, like Epic or Cerner, eliminate interoperability issues by bringing multiple applications and processes under one software. But in order for these complex software systems to work properly, you need a medical grade all in one computer that is compliant with their requirements. The high interoperability features of these software packages generally operate seamlessly, but it takes a computer powerful enough to run them. It’s not realistic to remove paper processes entirely—sometimes jotting down a note doesn’t really need a computer system—but we’re sure you can see a reduction in administrative costs from using the right kind of system coupled with high-interoperability software.

Registration Woes End with a Medical Grade Tablet

Paperwork—a dreaded life requirement that everyone faces at some point. It’s reported from some sources that patient registration on paper costs healthcare 45 billion dollars annually. Admissions packets average around 14 sheets of paper—multiply that per new patient, per day, and suddenly that price makes a lot of sense. Millions of hospital registrations happen annually, and with each paper-based registration, errors can be introduced and set procedures can lengthen registration time, and costs continue to climb. 

To specifically reduce administrative costs (and save the environment), patients and medical staff can all benefit from using a medical grade tablet so the process of entering patient information and storage is immediate. Attack one of the higher expenses in healthcare by using a tablet for administrative uses, reducing paper usage, curtailing ink usage, and even ensuring fewer errors with proper registration software. Plus, the medical grade tablet’s easy-to-clean screen and antimicrobial housing keep germs at bay inside of hospitals and doctors’ offices. Unfortunately, that doesn’t take the work part out of paperwork, but we’re sure some folks like taking the good over the bad. 

The way to a paperless future lies within technology; by using the right kind of medical grade all in one computer, your institution can see less of an investment in paper, ink, and costly printer repairs while also ensuring patients get the best available healthcare. In short, go green and save some green. Contact us to learn more.

 

medical tablets and fanless computers

3 of the Most Common Patient Complaints and Ways to Reduce Them

Patient satisfaction isn’t an easy task to handle within a hospital; people are already in places they don’t want to be, and the smallest gesture in improving a stay can travel miles for a patient’s well-being. It’s up to staff to perform those small gestures and take advantage of them for the betterment of people. Not taking advantage of those small details could result in patient complaints. Patients file complaints on a consistent basis, and rightfully so; sometimes small mistakes, unrefined processes, and archaic procedures just result in a bad experience. There are several reasons why a complaint might arise, and all of them should serve as examples on how to improve—lest the hospital suffers bad return rates, scathing online reviews—you get the idea. Here are some common patient complaints and what can be done to reduce their frequency greatly.

Let’s Communicate, Not Procrastinate!

Insufficient communication is a constant for complaints. It might be the case that a nurse forgot to notify next of kin if a patient’s medical conditions change, or maybe there isn’t enough social activity to ease someone’s mental health while they’re bedridden. Regardless, communication problems often rank within the top five for any hospital, but there are some ways to improve communication between patient and practitioner, or even among medical staff.

Medical staff can achieve higher patient satisfaction ratings by using a medical cart computer or a mounted medical computer in the patient’s room to demonstrate how a patient’s illness is affecting them. Plus, it’s likely the case throughout the hustle and bustle of daily hospital operations that communication isn’t the best between nurses and doctors. Medical tablets keep communication at a constant rate so there’s no information falling through the cracks. Nurses can receive updates with patient orders directly to a tablet while doing rounds, or can video conference with an attending physician in a remote location. All parties can stay up to date, minute by minute, so the focus can remain on getting the patient the care they need and send them away, healthier than before.

In addition to the importance of communicating test results and other pertinent medical information with patients, it is equally important for the mental well being of a patient to be able to communicate with loved ones. A medical computer mounted on a patient table can have the dual purpose of allowing a patient to video conference with family members, check social media accounts, and mitigate any feelings of isolation while admitted.

Patients Need Better Sleep

Another common complaint is a difficulty in getting a good night’s sleep. Hospitals operate on a 24/7 cycle, so ambient noise won’t be avoidable. However, there are ways to reduce noise in a patient’s room. A lot of hospitals are mounting computers in each patient room, but this presents a lot of challenges to a patient. With these devices running 24/7 components heat up and need to be cooled. The last thing a tired patient needs is for a computer fan to go off next to their bed in the middle of the night. A fanless medical computer is best for in-room devices. Why?

Computers with fans can often reach noisy levels! A computer with a fanless design provides cleaner, quieter environment to help a patient get a better night’s sleep. Fanless computers are also safer, as they don’t blow dust, germs, and other microbes through the air, which could lead to nosocomial infections.

Hurry Up and Wait to Feel Better

We all know the story—calling up to make an appointment, leaving a message, waiting for a phone call, answering a call and waiting on hold for the nurse for scheduling, getting transferred to another physician—hurry up and wait is a constant struggle for outpatients. We’ve all done it ourselves, so why would you want your patients to endure that? Would you prefer your patients to wait longer to feel better? We wouldn’t either, but waiting is a common complaint that a strong percentage of patients mark down on complaint sheets.

With the advent of telehealth, patients can access their hospital scheduling department through a web portal and send off their symptoms within a few minutes. Doctors are notified via a medical tablet that a new request for appointment is in, and then can receive symptoms, previous medical conditions, current medications, and likely diagnoses—all within a fraction of time from the “old ways.” The patient can get an earlier appointment scheduled, get into the office, see the doctor, review diagnosis and facts, and then have their prescription signed for at the point of care. And in some cases, a diagnosis or course of treatment can be prescribed without the patient ever even needing to go to the office. You’ve just saved your operations hours and reduced the wait time for your patient significantly, all because every process was handled electronically through a medical tablet. That’s technology working for you and your patients.

When addressing problems with better technology, suddenly we turn a hospital experience from a terrible necessity into something positive. The last place anyone desires to be is on a stretcher or hospital bed, but through the use of medical tablets and other devices, we might be able to put a spark in day-to-day struggles that people experience, whether in-patient or out. Get people feeling better again, quicker, and you’ll see fewer complaints, possibly more sparkling reviews, a higher attendance rate, and perhaps even better career satisfaction among the hospital staff. It’s said smiles are infectious, and we tend to agree. Contact us to learn more.

 

medical computers and computers on wheels

3 Ways Medical Grade Computers Make Surgery Safer

It’s clear that surgical mistakes—however minor they may be—are still prevalent on surgical tables and still cause significant health problems. You can easily get plenty of statistics online to verify some frequencies of surgical accidents. From problems of communication and preparation, to complete blunders like operating on the wrong limb or side of a patient, surgical mistakes are costly for everyone and can cause a medical practitioner to lose their license. That’s why it’s important to operate alongside a medical computer so that mistakes are reduced, whatever the cause. Here are three common mistakes that can happen in surgery that can be reduced with the use of a medical computer.

Use a Medical Computer to Track Items

Nearly 6 thousand patients per year leave the operating room table with leftover surgical equipment still inside them; a majority of these foreign objects are sponges that can cause painful medical symptoms and result in patient death if not handled properly. Some patients leave the table with surgical instruments still inside them. For standard surgical procedures, these kinds of mistakes shouldn’t happen, but to err is human and these mistakes are still a costly problem in operating rooms.

For the betterment of surgical procedures, it’s best if surgeons use medical computers to track RFID-enabled instruments being used in patients. As an instrument, sponge, or other supply is removed and used in operation, the computer can track its use. A surgeon can then refer to it after a long procedure and ensure all equipment is accounted for appropriately before wrapping up their procedure. The medical computer is there to catch what exhausted surgeons may miss when wrapping up a procedure.

Anesthesia Errors Happen All Too Often

Anesthesiologists are heavily responsible for ensuring a patient is unconscious before surgical procedures begin and remain safe throughout an operation. It’s one of the first steps in surgery that is incredibly important for the well-being of the patient during an operation. However, mistakes can easily happen even at this early stage of the operation. Anesthesia awareness is a very real result of not administering enough anesthesia, and it can cause long-term psychological damage to patients. Approximately 40 thousand Americans experience anesthesia awareness every year. Other common errors are just as scary—too much anesthesia can lead to a coma or brain injury. Unsatisfactory patient monitoring can lead to unsafe oxygen levels. Whatever the cause of the mistakes of the anesthesia, a small mishap can lead to profound negative results.

Anesthesiologists benefit from using a medical cart computer that is certified for near patient use to monitor vital signs and administer the proper dosages of anesthesia. This allows the anesthesiologist to be in the room during surgery, in what is often referred to as Computer Assisted Sedation (CAS). There is an entire field dedicated to controlling the state of the brain with anesthesia, and MRI studies have shown distinct differences in the conscious and unconscious mind and their relationship to specific parts of the brain. As practitioners use this and unravel more secrets of neurology, they can understand more about how the brain works and the proper dosages and practices of administering anesthesia. Not only would we see a proper reduction in accidents circling around administering too much or too little medicine, but using a medical computer to record patient vitals in real time would provide informatics for further research and understanding, as well as more automated processes for sedation.

Wrong Site, Wrong Procedure, Wrong Patient

It’s true that impossible-sounding mistakes have occurred beyond operating room doors. Sometimes a surgical team proceeds with the wrong procedure on the wrong patient—often referred to as WSPEs (wrong site, procedure, and patient errors) or “never events”—and any number of poor workplace practices can point to reasons why these exist. Stories of some cases are available for research online, such as when a patient with a head injury had his leg operated on in error. The doctor mistook the patient for another. It’s mistakes like these that lead to malpractice and legal matters in the future.

Surgeons and medical staff are encouraged to use guides and checklists installed onto medical grade computers in the operating room that guide surgeons with every step of a procedure—even on agreeing which patient is being operated on. Plus, surgical procedures are typically arduous processes that can take from several hours to beyond an entire day to complete. The use of computers in surgery can assist a surgeon at any moment in time and guide them through a surgical procedure, however complex it may be. New technological advancements are pushing robots into surgery now, so after operating for 20 hours the surgeon may not need to use their hand to make incisions. Efforts to reduce human involvement in surgery are growing with this new technology. Hopefully as adoption of these sophisticated technologies increases, we will see a reduction in surgical mistakes.

It’s important to understand that surgical mistakes can’t be reduced to zero; they will still happen regardless of using a medical PC or not. Reduction is our goal when it comes to any problem in the medical realm that detracts from the well-being of people, but it starts with being prepared with the right technology. Contact us to learn more.

medical cart computers and medical computers

The Differences Between Antimicrobial Housings and Coatings

Per the CDC, Hospital-Acquired Infections (HAIs) infect one in 20 patients daily. This costs healthcare several billion dollars a year—no trifling matter. Some sources cite that UTIs and pneumonia are the top two most common HAIs, with pneumonia being the top infection that claims lives. It’s a scary thought to have one of the most infectious diseases on a surface nearby a patient going through surgery, and so every precaution must be taken to avoid patients getting infected via the unseen enemy. With such a bombardment of invisible microbes and pathogens capable of infection, it’s not possible to reduce all infections at all times. However, using what’s called an antimicrobial surface on all medical surfaces is a step in the right direction.

If you work in healthcare, you’ve likely seen some label or notifying mark on a medical cart saying the cart in use has an antimicrobial surface. It’s a no-brainer that the antimicrobial surface is a necessary feature with a medical cart computer in a hospital to reduce the spread of disease and infection. What you’re probably not aware of is that there isn’t just one method of making the plastics so they’re worthy of the antimicrobial label. There are several different materials considered antimicrobial. Silver, for example, is capable of reducing microbial activity, but we doubt that anyone would want to buy a medical computer housed in silver—that’s probably best reserved for surgical instruments. Constructing an antimicrobial surface takes a proper balance of finding the right materials for the work, the best method of creating the housing, and an option that doesn’t break the bank.

Plus, “antimicrobial” means something that discourages microbe growth in one way or another. A microbe is a general definition that fits plenty of microorganisms, but for the purposes of this blog, the definitions should be handled in a general fashion. Here are some methods of producing an antimicrobial surface for medical computers and why one should be considered over the other when in the market for new technology.

A Coating that Cleans Itself

A lot of medical grade computer manufacturers will label their hardware as antimicrobial or “self-cleaning,” but in the details of the product documentation, you’ll likely find it features an antimicrobial coating. This method to keep the computer surface clean has a huge disadvantage: it degrades over the span of several months. The coating flakes off when interacting with light, shedding off microbes as well. The constant disinfection that is required in a hospital setting will also degrade an antimicrobial coating. It’s true the product is self-cleaning, but only for the suggested timespan (likely offered in the documentation too). Plus, that doesn’t speak about the capability of inactivating microbes or discouraging growth. Another kind of coating is an application of silver nanoparticles or biocides, but much like the former, the coating wears off over time. This brings into question how effective a medical computer with a coating might be over the course of its lifespan—it could likely render the computer’s antimicrobial feature obsolete quickly.

The Antimicrobial Everlasting Housing

Medical computers with antimicrobial housings—not coatings—degrade less over time since there’s no “shedding.” There’s a superior method of producing an antimicrobial plastic for a computer: instead of using the short-term technology found with coatings that degrade over time, the best companies add an antimicrobial agent into the manufacturing process of the resin that lasts longer than a coating. The agent used not only discourages growth, it actually is highly toxic to microbes and bacteria. Instead of shedding off infections, they’re reduced on the surface of the plastic housing. It’s a more effective method of reducing microbe activity.

Beyond Coatings and Housings

For starters, the medical computers used nearby patients should be disinfected frequently. Plus, it helps to have a high ingress protection for frequent disinfections—over time, liquids can seep into the innards of equipment and shorten the expected lifetime of the computer. An IP65 rating means the front bezel is sealed against direct sprays, so the computer can be continuously cleaned without fear of shorting the internal components or wearing away anything protective. Beyond that, using hygiene toolkits and practicing constant hand hygiene are additional safety methods to ensure a reduction in HAIs. It is also important to note that a computer is rarely a stand alone device in a hospital setting. They are often mounted on medical carts or other equipment. It is important that the medical cart is antimicrobial as well, otherwise you aren’t really preventing the spread of anything.

Using the best technology with the most robust features in a hospital setting is the best way to guard your hospital or clinic against HAIs. An antimicrobial coating on a medical computer doesn’t last as long as the computer itself—it’s best to find more sophisticated technology with stronger features, particularly a computer with antimicrobial housing with agents mixed into the resin of its plastic. Contact us to learn more.

medical grade computers and medical grade all in one

4 Questions to Ask When Searching for a New Medical Grade Computer

What is the difference between “healthcare grade” and “medical grade,” and what problems might arise if one is chosen over another? It seems like such a small thing. What’s in a word? A lot, when you break it down. The distinction between healthcare grade and medical grade computers is important, and here’s why: medical grade suggests a higher standard for a healthcare setting.

Computer systems that are marketed as medical grade are less problematic because they’re more feature-rich than healthcare grade. For instance, is a healthcare grade computer housed in an antimicrobial casing? Does this healthcare grade computer protect against infection, ingress, and the spread of disease? Has it been tested for radiation and electric emissions for near patient use? By the end of this blog, you will be equipped with the knowledge to know what questions you need to ask, and how to verify the validity of a vendor’s response.

The IEC60601-1 Certification – Get Tested

To be truly medical grade, a computer must meet IEC 60601-1 certification. More than just an alphanumerical string, IEC60601-1 is a necessary standard that protects the lives of patients. It details a number of separate sub-standards to protect patients from electric shock, radiation, machine interference (pinching), and other hazards. Some manufacturers may tout the expansive standard, but what they don’t reveal is their product meets only one sub-standard instead of the entire spectrum of standards within IEC60601-1. So if a corporation touts its new computer as IEC60601-1 compliant, be sure to investigate what that means.

True medical grade computers have certifications for the entire spectrum of standards for IEC60601-1 and you can easily verify the testing by asking a manufacturer for their certification. This isn’t a short document either. True 60601-1 certification documents are extensive. It’s also important to check the year of the standard—if a computer is certified for the IEC60601-1 standard that was defined several years ago, it may be best to find a product with a more recent certification.

Don’t be fooled by the term compliant vs. certified either. The most accepted definitions of these terms: compliance means the specifications of a product simply meet a standard. Certification means the product passed a set of rigorous, difficult tests and is a step above compliance, earning the tested product a certificate or label. The problem with compliance is that any corporation can self-claim their product is compliant with almost anything. Unless an independent 3rd party testing facility has verified that a computer meets all specifications it isn’t 60601-1 certified.

Fanless Designs, IP65, & Antimicrobial Technology

True medical grade computers not only meet rigorous standards but are feature-rich and better equipped to solve a wider range of problems that can arise in a hospital. Healthcare-Acquired Infections (HAIs) are still prevalent pests within hospital doors, and computers with more robust features perform better in terms of safety for everyone. Were you aware that HAIs can spread through a computer’s fan? Dust is more hazardous than we realize in hospitals and one lone dust fragment can turn infectious to any patient. Fanless medical computers are built to protect the patient (and staff!) by reducing airborne particle spread—something required for clean room operation.

Given the need for constant disinfection, IP65 ratings are also extremely important. Would you rather settle for a computer that protects from limited dust ingress and liquid sprays (IP54) or a computer that is protected against total dust ingress and more powerful liquid sprays (IP65)? Exposed bezels aren’t just breeding grounds for bacteria, but they can be ingress points for chemical disinfectants, which can lead to damage of internal components. Its important for a computer to have an IP65 rating, especially in a hospital setting, so units can be properly cleaned and disinfected.

Which brings us to antimicrobial technology. Some “healthcare edition” computers don’t even offer antimicrobial properties. The models that do aren’t all created equally. Because hospital disinfectants are so powerful, it isn’t uncommon for computers treated with an antimicrobial coating to degrade over time. In addition to cleaning a unit, these disinfectants can strip away the antimicrobial coating as well. You should look for a computer that has antimicrobial properties injected directly into the plastic molding and has been independently tested to maintain those properties over several thousand cleanings.

How Long of a Product Life Cycle?

What’s the life cycle of the computer in question? The best medical grade all in one systems on the market have a product cycle of 3 to 5 years—significantly longer than commercial-grade brand computers which average about 1.5 years. Project deployment for these systems can sometimes take years as hospital departments shed older computers and implement new ones over time. What if the purchased product isn’t available in that timespan? Will you be ready to face the potential pitfalls of mixing hardware within a computer project deployment?

We’ve heard of problems arising from mixing hardware in a deployment in the past. Even small configurations—changing a video card, altering the aspect ratio of a monitor, or even reducing the number of ports on a computer—can drastically change how mobile EMR software operates for the end-user. Differences in support, operating systems, and driver conflicts can sometimes be nasty roadblocks for interoperability if your hospital has a mixed project deployment. The best practices for a hospital are to purchase an identical set of computers for their entire project timeline, and that means ensuring the product life cycle is more extensive than the competition.

 

We hope these questions serve as a basis for understanding what’s on the market and how important it is to be armed with the knowledge necessary to ask the right questions. The best computers in a hospital setting are true medical grade all in one systems because of their superior features that safeguard the lives of a hospital’s entire population, whether patient or practitioner. Contact us to learn more.

medical computer and computer on wheels

3 Methods of Reducing HAIs in Hospitals

The US Office of Disease Prevention and Health Promotion has seen a decline in HAIs (Healthcare-Acquired Illnesses) in the past recent years. For instance, invasive MRSA infections have seen a 36-percent reduction between 2009 and 2014 per the health.gov website. That’s the result of a combined effort of following the specific action plan available on the site. However, healthcare as a whole can always make stronger efforts to reduce HAI contraction frequency. There are many tech-related problems that still contribute to the number of HAIs (and related deaths) that can be fixed by ensuring your hospital technology meets the grade. Here’s how to combat them with the tech in your hospital.

Dust-Free is a Must

One of the contributing factors for HAIs is something we can’t see very well—dust. Dust is more dangerous than we think, but it’s important we unpack what that term means. A large percentage of dust consists of dormant, decaying, and live microscopic particles, often particles that can be hazardous to patients. A healthy individual’s immune system is capable of protecting against stray floating particles, but to hospital patients under surgery or with compromised immune systems, many precautions need to be taken. One single infected particle from the air settling inside of a patient with an open wound can turn a hospital visit into an infection that can spread to the masses.

Experts in the field stress that fanless medical computers are important for hospital use but are mandatory for surgical procedures and anesthesiology efforts. A fanless design is a proper feature on a medical computer that significantly reduces the risk of HAIs and airborne infections. A computer without a fan intake won’t liberally spread dust mites and bacteria through the air. Besides, fans are considered heavy failure points for computers. A fanless construction won’t perform the impossible by eliminating all dust, but it opens up more possibilities for medical practitioners—like running the medical computer at the bedside to record a surgical video. Regardless of the use of the medical computer, a fanless design is superior for cleanliness. It boosts device longevity too.

HAIs Go Beyond Dust Into Microbes

Fanless designs are great for clean environments, but there’s still a presence of pestilence that we aren’t able to see. We invite you to take a closer look at any surface with a high-powered microscope to see what dangers lurk on nearly every surface in a hospital. Microbes thrive on all surfaces, especially surfaces that are frequently touched thousands of times per day. A computer on wheels that nurses take room to room is no stranger to touch, so this kind of computer needs a little more oomph to protect everyone against the smallest of threats.

Every true medical computer has an antimicrobial housing with a resin mixed into the plastic to help reduce HAIs. Fanless design is a necessary feature for a clean-room environment, but an antimicrobial housing is that extra “oomph” feature that a proper medical computer should have. It discourages microbe spread and growth. HAIs can be reduced further with these integrated features you’ll find in computer on wheels.

Spray Directly on the Medical Computer

It’s easy to be in a mindset of “constant cleaning” when in a hospital. Typically there are hand sanitizer stations at every patient door and at nurse stations, so seeing disinfectant everywhere helps to remind everyone to wash up often. Even with strong efforts in keeping clean hands, infections are still possible. Computers on wheels are highly frequented by hands (especially those with touchscreens), so disinfecting the computer is a no-brainer for physicians and staff. The problem lies with the computer itself—not all of them are built to take constant sprays. One sudden flick of the wrist could send a jet of industrial disinfectant onto a capacitor, and suddenly you’ve turned a cleaning problem into an expensive IT problem. That’s why you should look for a medical grade computer with an IP65 rating.

An Ingress Protection rating of IP65 is prime for a reduction in HAIs because you can spray directly on the sealed screen without worry of damaging the components of the computer. Besides, bacteria have an affinity for hiding in the nooks and crannies of unsealed bezels, reducing the effectiveness of a direct disinfection. It’s just a superior solution to tier-1 computers found in a retail store.

 

A high frequency of Healthcare-Acquired Illnesses in a hospital or clinic puts the cleanliness standards behind doors into question. It’s important to be “clean conscious” at all times when working with people, but ensuring that all computers have these features can reduce HAI frequency and add an extra layer of protection for everyone, whether medical staff or patient. Take a stance against the microscopic culprits and arm your hospital with the best medical computers on the market today. Contact us to learn more.

 

surgical monitor and medical computer system

3 Screen Technologies in Hospitals that Can Alleviate Problems

Not all screens are created equal, and that can be easily said for technology in a hospital. Screen tech should vary depending on the purpose the screen in question serves. Some monitors are used in surgical procedures, others are used heavily with EMR software, and some are even used by patients. If you don’t have the proper screen for your work in the hospital, it can affect staff workplace effectiveness and even patient satisfaction. If insufficient screen technology is a pain point for your medical facility, we’ve got the lowdown on what kind of hardware is best for what hospital positions.

Surgeons Need a Surgical Monitor

Medical error is found to be the third leading cause of death in the US; that statistic translates to about 250 thousand deaths annually according to Johns Hopkins. This statistic doesn’t delve into the specific reasons why an error occurs outside of human nature, but the best approach we can have is assuming this prevalent problem can be mitigated from all angles. One of the methods we can employ to safeguard against medical error is ensuring the proper technology is applied to the right medical procedure. Surgery, for example. Surgeons need excellent vision. If a surgeon begins an invasive procedure like an endoscopy, it’s important they’re able to see the imagery they’re receiving from the surgical camera clearly. Surgeons require technology beyond what’s available in stores that gives them instant feedback from their surgical cameras with high-quality imagery.

An all-in-one computer with a surgical monitor can reveal minute details of a patient’s condition for the most accurate diagnoses. The combined higher resolution, stronger brightness measurements, and unmatched clarity give medical practitioners the edge in identifying illnesses and hard-to-see symptoms so signs of a disease are clearer to see. Surgical monitors on all-in-one computers are key to proper diagnoses and effective operations. What you might find in a store doesn’t compare to the technical advantage you’ll find with a surgical monitor. With this technology, we can reduce medical error and misdiagnosis.

PCAP Technology on an All-in-One Computer

EMR software has grown in complexity since its inception. It’s also become more user-friendly by incorporating touch-screens and large interfaces to navigate the functions embedded within the software. However, the wrong touch screen technology can be a little for end users. Some touch screens lack clarity and features for medical professionals to use, so it’s best to employ what’s called projected capacitive technology.

A medical computer system using a projected capacitive (PCAP) touch screen is ideal for common use in a hospital because of the clearer display. It’s easier on the eyes because of the built-in technology and is more responsive than older touch screen tech. It allows for multiple-touch input so medical staff can fully manipulate imagery by zooming and rotating. This kind of technology is also more durable so it lasts longer than other touch screens.

Making Patient Engagement Computers More User Friendly

Sometimes using a mouse and keyboard isn’t feasible in specific computer stations behind hospital doors. A regular computer isn’t user-friendly with a keyboard and mouse since they’re cumbersome to control in patient rooms. Ever tried using a mouse and keyboard while laying down? It’s awkward. Patients don’t always have the strength or ability to sit up and use a computer, nor is there always a place to store a keyboard and mouse.

That’s why it’s ideal for any patient engagement computer to have a touchscreen. It’s a cost-effective solution for the patient bedside, and it’s easy for both medical practitioners and patients to control the computer. Medical practitioners can still use medical gloves for input, allowing them to use the computer to do charting or check patient test results. They can even share images like x-ray results with patients bedside. For the patient, a touchscreen allows them the freedom to navigate the internet, make video calls to family or turn on a movie.

 

By using the proper screen technology—whether it’s on a medical computer system with a surgical monitor or a patient engagement computer—we can reduce the frequency of medical error, misdiagnosis, and discomfort for all parties in the hospital. We still have a long journey ahead of us to see these problems reduced to almost zero frequency, but by understanding the primary ways to address these problems through better technology, we’ve got a promising start. Contact us today to see how you can start reducing medical errors so your hospital or clinic improves.

 

Computer on wheels or medical computer

Mishaps in Hospitals from Inadequate Hardware Problems

Technology is great. We can stick to 8 hour work days while increasing productivity and then go home to families or plan out our next self-driven project. Granted that’s what technology is supposed to help us do, but sometimes bumps in the road of problem A to solution B can be tech-central. Technology can fail, unfortunately. Thankfully, the time invested to restore tech to working order is a sacrifice hospitals are willing to accept to bring better and less erroneous healthcare to patients. However, when older and inadequate tech is more of a burden, it’s time to consider scrapping what used to work ten years ago with something that can reduce tech-related stress and hangups that drain more time than necessary to get the job done.

Spotty WiFi with Computers on Wheels

It’s a constant problem for the 21st century in hospitals everywhere—spotty wireless communications in every corner of the hospital building. Call up a nurse’s desk to ask what issues they’re facing with technology and inconsistent WiFi will be mentioned. Chalk it up to weakened signals from aging hardware and insufficient components. It’s not feasible to remove that problem for good, but it’s possible to pinpoint key factors in technology—mostly residing in a hospital’s medical computers—that can be improved so WiFi isn’t a problem of which patient room you’re in or where you’re standing. Here’s WiFi woes and ways to restore the fidelity in the “Fi.”

Take a hypothetical case—a nurse using a cloud-based EMR system on a cheap laptop finds that in patient room 105 the WiFi doesn’t kick in, and so entering information relies on memory, written notes, or a silly, cumbersome workaround. That’s not ideal for a hospital, especially when “zero” can be a dangerous entry for a patient refill or a different metric. If the IT department has ensured that the wireless infrastructure is the highest standard on the market, then the culprit lies within the laptop. The wireless card inside of the machine doesn’t communicate well with the wireless routers in the hospital.

If that’s the reason for the signal drop, it’s time for IT to consider upgrading their computing efforts to medical computers with Intel-certified wireless cards instead of laptops that power cheap alternatives. An Intel dual-band wireless AC card is the current standard for wireless technology in a hospital. Not only more secure, these cards have the know-how to switch between wireless routers on the fly without signal loss. Computers on wheels are often pushed through several hospital wings and floors, jumping from one wireless router to the next. Intel wireless cards are secure and stable enough to swap from router to router seamlessly. It’s a hardware standard that computers on wheels and medical devices need to operate optimally. Besides, less stress on the end-user is always a positive thing.

Hospitals Don’t Shut Down—Neither Should the Hardware

Twenty thousand hours. That’s how long a standard hard drive disk lasts per average metrics and regular use. It may seem like a lot, but that’s just over two years if you do the math. Medical computers operate at near 24/7 runtimes. If there’s a hard drive failure in two years, that’s not a very strong lifespan for a computer to store data. The last mishap a nurse or physician wants is for the digital rug to be pulled out beneath them with a hard drive failure while they’re busy entering patient data into a medical computer. The drive can’t be sent off to data rescue because it would violate HIPAA laws. So, what to do?

Thankfully, technology has improved hard disk storage so there aren’t moving parts to break—solid state drives have a longer lifespan than regular platter hard drives, but that doesn’t rule the smarter tech out of defect or an eventual kaput. A medical grade computer with a military-grade solid state hard drive will push that two-year average life cycle to beyond five years. If the looming storage failure is still a concern for staff—which can happen at any given moment—then a backup drive coupled with the original solid state can serve as a proper safety net. IT can clone the surviving drive and restore the medical computer to optimal working status. Besides, a computer cycle for a hospital should be five years to stay with EMR software development. Having a hard drive that’s graded to last beyond a purchase cycle is ideal.

Shoddy Medical Computer Touch Screens

Touch screens are breeding grounds for germs and bacteria. Introduce the dirt and grease from five separate individuals’ hands onto a touch-screen interface and an infection may reside somewhere in the fingerprint jungle. They’re not always the easiest to clean either—spray disinfectant directly on a medical monitor and the internal components could suffer from adverse effects from the disinfectant (broken pixels, unresponsive touch controls, or an immediate transformation into a paperweight) running into the crevices of the monitor. Some insufficient touch screen tech needs constant calibration to ensure what’s touched is the intended function. Pressing “Close” should never result in “Administer Medicine”—we shudder at that thought. But there’s still tech problems galore in working with touch screens that don’t measure up to what hospitals need.

The kind of tech needed in a hospital is what’s called 5-Wire Resistive technology. Avoiding too much tech-talk, it’s a more durable technology than capacitive because it holds up to scratches and cosmetic imperfections, it’s easier to work with since it doesn’t require skin contact, it’s cheaper to manufacture, and it lasts longer than the newer capacitive technology. Couple these features on a medical computer and bye-bye tech problems.

It isn’t intuitive to think of hard drives, touch screen technology or wireless cards when you’re talking about patient care. But in today’s HIT world, technology is one of the driving factors in providing the absolute best user experience for healthcare practitioners so they can focus on taking care of patients. For more information on how a computer designed specifically with healthcare in mind is different than a commercial grade computer you can contact us today to learn more about our medical computers.